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Abstract

We investigate the relation between the phase-space structures of Hamiltonian
and non-Hamiltonian deterministic thermostats. We show that phase-space
structures governing reaction dynamics in Hamiltonian systems map to the same
type of phase-space structures for the non-Hamiltonian isokinetic equations of
motion for the thermostatted Hamiltonian. Our results establish a framework
for analyzing thermostat dynamics using concepts and methods developed in
reaction rate theory.

PACS numbers: 45.05.+x, 45.20.−d, 82.20.Db

1. Introduction

Deterministic thermostats are widely used to simulate equilibrium physical systems described
by ensembles other than microcanonical (constant energy and volume, (E, V )), such as
constant temperature–volume (T , V ) or temperature–pressure (T , p) [1–5]. Deterministic
thermostats are typically obtained by augmenting the phase-space variables of the physical
system of interest with a set of additional variables whose role is to alter the standard
Hamiltonian system dynamics in such a way that a suitable invariant measure in the system
phase space is preserved. In the familiar Nosé–Hoover (NH) thermostat [6, 7], for example,
the exact dynamics preserves both an extended energy H and a suitable invariant measure,
ensuring that, provided the extended system dynamics is effectively ergodic on the timescale of
the simulation, the physical system will sample its phase space according to the canonical
(constant T) measure.

Extended system thermostat dynamics can be either Hamiltonian [6, 8–11] or non-
Hamiltonian [7, 12–20]. An important motivation for the formulation of Hamiltonian
deterministic thermostats such as the Nosé–Poincaré system [11] is the possibility of using
symplectic integration algorithms to compute trajectories [3, 21, 22].
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In this approach, an extended Hamiltonian is defined for the physical system plus
thermostat variables which incorporates a coordinate-dependent time scaling of Poincaré–
Sundman type [23, 24]. Restricting the dynamics to a fixed value (zero) of the extended
Hamiltonian results in the system variables sampling their phase space according to, for
example, the canonical density [11] (subject to the assumption of ergodicity). The Hamiltonian
version of the isokinetic thermostat is described in section 2.

A fundamental question concerning deterministic thermostats has to do with the effective
ergodicity of the dynamics on the timescale of the simulation. If the dynamics is not effectively
ergodic then trajectory simulations will not generate the correct invariant measure [25, 26].
It has long been recognized, for example, that the dynamical system consisting of a single
harmonic oscillator degree of freedom coupled to the NH thermostat variable is not ergodic
[27]. A large amount of effort has been expended in attempts to design thermostats exhibiting
dynamics more ergodic than the basic NH system [3, 4, 28, 29].

The question of ergodicity in thermostats is conceptually closely related to the problem
of statistical versus nonstatistical behavior in the (classical) theory of unimolecular reaction
rates [30–32]. Broadly speaking, in this case one would like to know whether a molecule
will behave according to a statistical model such as RRKM theory, or whether it will exhibit
significant deviations from such a theory, ascribable to nonstatistical dynamics [33, 34]. Such
‘nonstatisticality’, which can arise from a number of dynamical effects, is analogous to the
failure of ergodicity in deterministic thermostats.

In recent years, there have been a number of theoretical and computational advances
in the application of dynamical systems theory [35–37] to study reaction dynamics and
phase-space structure in multimode models of molecular systems and to probe the dynamical
origins of nonstatistical behavior [38, 39]. The fundamental chemical concept of the transition
state, defined as a surface of no return in phase space, has been successfully and rigorously
generalized from the well-established 2 degrees of freedom case [40] to systems with N � 3
degrees of freedom [39]. Moreover, dynamical indicators exist (determination of reactive
phase-space volume, behavior of the reactive flux) to diagnose nonstatistical behavior.

Despite their obvious potential relevance for the questions at issue, there has been
relatively little work applying the powerful techniques from modern dynamical systems
theory, in particular the theory of multidimensional Hamiltonian systems [36, 37], to study the
phase-space structure of deterministic thermostats [2, 8, 27, 29, 41–44]. There appears to be
considerable scope for application of these and other approaches [45–47] to the dynamics of
deterministic thermostats.

In this communication, we begin the development of a novel theoretical framework for the
study of thermostat dynamics. Specifically, we describe how recently developed methods for
the analysis of multimode Hamiltonian systems can be applied to investigate the phase-space
structure of the isokinetic thermostat [2].

Although not as widely used as the Nosé–Hoover thermostat and its many variants,
the non-Hamiltonian version of the isokinetic thermostat has been developed and applied
to several problems of chemical interest by Minary et al [48, 49]. In this thermostat, the
particle momenta are subject to a nonholonomic constraint that keeps the kinetic energy,
hence temperature, constant. The resulting dynamics generates a canonical distribution in
configuration space [2]. A Hamiltonian version of the isokinetic thermostat was given by
Dettmann [2, 8], and this Hamiltonian formulation (see also [50, 51]) is the point of departure
for our investigation.

The Hamiltonian formulation of the isokinetic thermostat is presented in section 2. The
non-Hamiltonian equations of motion for a Hamiltonian system subject to the isokinetic
constraint are shown to correspond to Hamiltonian dynamics at zero energy under an extended
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Hamiltonian whose potential is obtained from the physical potential by exponentiation. The
extended Hamiltonian dynamics are therefore nonseparable and potentially chaotic (ergodic),
even though the physical Hamiltonian might be separable. For the Hamiltonians we consider
that the physical potential exhibits a saddle of index 1, as for the case of a bistable reaction
profile coupled to one or more transverse confining modes. The bistable mode can play two
distinct roles in the theory: it can either be interpreted as a reaction coordinate of physical
interest or as a thermalizing thermostat mode [48].

Essential concepts concerning the phase-space structure of multimode Hamiltonian
systems, especially the significance of normally hyperbolic invariant manifolds (NHIMs)
and their role in the phase-space structure and reaction dynamics of multimode molecular
systems with index 1 saddle, are briefly reviewed in section 3.

Our focus in the present study is on saddles of index 1. As mentioned above, the index 1
saddle corresponds to a bistable reaction coordinate coupled to one or more transverse modes,
and is a case of fundamental importance for transition state theory. The results obtained in
this paper establish the importance of the corresponding structures in the phase space of the
isokinetic thermostat. The theory of the phase-space structure in the vicinity of higher index
saddles is not as fully developed as the index 1 case, and many open problems remain.

In section 4 we show that the extended Hamiltonian dynamical system satisfies the
same conditions satisfied by the physical Hamiltonian that give rise to the phase-space
structures discussed in section 3. We then show that these phase-space structures exist for the
non-Hamiltonian isokinetic equations of motion for the thermostatted physical Hamiltonian
by an explicit mapping. Section 5 concludes.

2. The physical Hamiltonian, the extended Hamiltonian and non-Hamiltonian

isokinetic thermostat

We begin with a physical Hamiltonian of the standard form

H(q, p) = 1
2p2 + �(q), (1)

with Hamilton’s equations given by

q̇ = ∂H

∂p
= p, (2a)

ṗ = −∂H

∂q
= −�q(q), (2b)

where (q, p) ∈ R
n × R

n are the physical coordinates and �(q) is the potential energy.
Following Dettmann and Morriss [2, 8], we construct a Hamiltonian system with the
property that trajectories on a fixed energy surface of the new Hamiltonian correspond to
the trajectories of the physical Hamiltonian (1) which satisfy an isokinetic constraint in the
physical coordinates. An extended Hamiltonian K is defined as follows:

K(q, π) = e−B�HB, (3)

where HB is

HB = 1
2 e(B+1)�π2 − 1

2 e(B−1)�. (4)

Here, B is an arbitrary parameter, and the relation between the momentum variables p and π

is specified below. The value chosen for the parameter B defines a particular time scaling via
factorization of K; setting B = −1, for example, ensures that HB has q-independent kinetic
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energy. (For simplicity we measure energies in units of kBT , thus keeping the value of T
implicit.)

The Hamiltonian (3) includes a time scaling factor e−B�, and Hamilton’s equations of
motion for K in physical time t are

q̇ = +
∂K
∂π

= e�π (5a)

π̇ = −∂K
∂q

= −�q

[
1

2
e�π2 +

1

2
e−�

]
(5b)

and are manifestly B-independent.
To show that trajectories of the Hamiltonian system (5) with K = 0 correspond to the

trajectories of the physical system (1) satisfying the isokinetic constraint, first note that the
time derivative of HB along trajectories of (5) is given by

ḢB = q̇
∂HB

∂q
+ π̇

∂HB

∂π
(6a)

= B�q e�πHB. (6b)

This implies that trajectories of (5) satisfying HB = 0 at t = 0 satisfy HB = 0 for all t (for
arbitrary B). Using (3), this implies that these trajectories are also confined to the surface
K = 0 for all the time.

The relationship between the Hamiltonian dynamics of (5) on K = 0 and isokinetic
trajectories of (1) is made apparent by making the noncanonical transformation of variables

q �→ q, (7a)

π �→ e−�(q)p. (7b)

This coordinate transformation is clearly invertible and is, in fact, a diffeomorphism (as
differentiable as �). Applying (7) to HB gives

HB = 1
2 e(B−1)�(p2 − 1) (8)

from which we can immediately conclude that trajectories of the Hamiltonian system (5) with
K = HB = 0 automatically satisfy the isokinetic condition

p2 = 1, (9)

in the physical coordinates (q, p). Substituting relation (7) into (5) we obtain equations of
motion for (q, p):

q̇ = p (10a)

ṗ = −�q
1
2 (p2 + 1) + p(�q · q̇) = −�q − αp, (10b)

where α ≡ −�q ·p and we have used the constraint p2 = 1. Equations (10) are the isokinetic
equations of motion for the thermostatted physical Hamiltonian (1) in physical time t, obtained
via Gauss’ principle of least constraint [2].

By design, the isokinetic dynamics (10) generates a canonical distribution in the
coordinates q [2, 8]. Minary et al [48] have shown that the addition of thermalizing degrees of
freedom to the physical Hamiltonian (1) can facilitate the attainment of the correct canonical
distribution in q-space. If H describes a collection of uncoupled oscillators, the addition
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of a bistable thermalizing degree of freedom renders the Hamiltonian dynamics under K
isomorphic to that of a reactive degree of freedom coupled to several bath modes, so that we
can obtain useful insights into the thermostat dynamics using methods recently developed for
multidimensional Hamiltonian systems. Alternatively, if H describes a reactive mode coupled
to bath modes, then the K dynamics is already in an appropriate form for the phase-space
analysis described in the following section.

3. Phase-space structures on a fixed energy surface

Our analysis of thermostat dynamics will be carried out in phase space, using the tools and
framework for reaction type dynamics of Hamiltonian systems developed in [38, 39, 52–58].
We will show in section 4 that these results apply both to the physical Hamiltonian system (2)
and to the extended Hamiltonian system (5). Here we give a brief summary of the setting and
relevant results from these references.

The starting point for identifying a region of phase space relevant to reaction is to locate an
equilibrium point of Hamilton’s equations, denoted (q∗, p∗), that is of saddle-center-· · ·-center
stability type. By this we mean that the matrix associated with the linearization of Hamilton’s
equations about this equilibrium point has two real eigenvalues of equal magnitude, with one
positive and one negative, and n−1 purely imaginary complex conjugate pairs of eigenvalues.
We will assume that the purely imaginary eigenvalues satisfy a generic nonresonance condition
in the sense that they are independent over the rational numbers (this is discussed in more
detail in section 4).

We will assume that such an equilibrium point is present in the physical system (2) and
we will show that the same type of equilibrium point exists for the extended Hamiltonian
system (5) in section 4. However, the discussion in this section applies to any type of
Hamiltonian system near the same type of equilibrium point. Without loss of generality we
can assume that (q∗, p∗) is located at the origin, and we denote its energy by H(q∗, p∗) ≡ h∗.

We will be concerned with geometrical structures in a neighborhood of phase space
containing the saddle-center-· · ·-center type equilibrium point. We emphasize this fact by
denoting the neighborhood by L; this region is to be chosen so that a new set of coordinates
can be constructed (the normal form coordinates) in which the Hamiltonian can be expressed
(the normal form Hamiltonian) such that it provides an integrable nonlinear approximation to
the dynamics which yields phase-space structures to within a given desired accuracy.

For h − h∗ sufficiently small and positive, locally the ((2n − 1)-dimensional) energy
surface �h has the structure of S2n−2 × R in the 2n-dimensional phase space. The energy
surface �h is split locally into two components, ‘reactants’ (R) and ‘products’ (P), by a
((2n−2)-dimensional) ‘dividing surface’ (DS(h)) that is diffeomorphic to S2n−2. The dividing
surface that we construct has the following properties:

• The only way that trajectories can evolve from reactants (R) to products (P) (and vice
versa), without leaving the local region L, is through DS(h). In other words, initial
conditions on this dividing surface specify all reacting trajectories.

• The dividing surface is free of local re-crossings; any trajectory which crosses it must
leave the neighborhood L before it might possibly cross again.

• The dividing surface minimizes the (directional) flux.

The fundamental phase-space building block that allows the construction of a dividing
surface with these properties is a particular normally hyperbolic invariant manifold (NHIM)
which, for fixed energy h > h∗, will be denoted by NHIM(h). The NHIM(h) is diffeomorphic
to S2n−3 and forms the natural dynamical equator of the dividing surface: the dividing surface
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is split by this equator into (2n−2)-dimensional hemispheres, each diffeomorphic to the open
(2n − 2) ball, B2n−2. We will denote these hemispheres by DSf(h) and DSb(h) and call them
the ‘forward reactive’ and ‘backward reactive’ hemispheres, respectively. DSf(h) is crossed
by trajectories representing ‘forward’ reactions (from reactants to products), while DSb(h) is
crossed by trajectories representing ‘backward’ reactions (from products to reactants).

The (2n − 3)-dimensional NHIM(h) is an (unstable) invariant subsystem which, in
chemistry terminology, corresponds to the energy surface of the ‘activated complex’
[40, 59].

The NHIM(h) is of saddle stability type, having (2n−2)-dimensional stable and unstable
manifolds W s(h) and W u(h) that are diffeomorphic to S2n−3 ×R. Being of co-dimension one3

with respect to the energy surface, these invariant manifolds act as separatrices, partitioning
the energy surface into ‘reacting’ and ‘nonreacting’ parts.

These phase-space structures can be computed via an algorithmic procedure based on
Poincaré–Birkhoff normalization [38, 39, 52]. This involves developing a new set of
coordinates, the normal form coordinates, (q̄, p̄), which are realized through a symplectic
coordinate transformation from the original, physical coordinates,

T (q, p) = (q̄, p̄), (11)

which, in a local neighborhood L of the equilibrium point, ‘unfolds’ the dynamics into a
‘reaction coordinate’ and ‘bath modes’. Expressing H in the new coordinates, (q̄, p̄), via

HNF (q̄, p̄) = H(T −1(q, p)) (12)

gives HNF in a simplified form. The normalization procedure can also be adapted
to yield explicit expressions for the coordinate transformations, T (q, p) = (q̄, p̄) and
T −1(q̄, p̄) = (q, p), between the normal form (NF) coordinates and the original coordinates4.
These coordinate transformations are essential for physical interpretation of the phase-space
structures that we construct in normal form coordinates since they allow us to transform these
structures back into the original ‘physical’ coordinates.

The nonresonance condition implies that the normal form procedure yields an explicit
expression for the normalized Hamiltonian HNF as a function of n local integrals of motion:

HNF = HNF(I1, I2, . . . , In). (13)

The integral, I1, corresponds to a ‘reaction coordinate’ (saddle-type DoF):

I1 = q̄1p̄1. (14)

The integrals Ik , for k = 2, . . . , n, correspond to ‘bath modes’ (center-type DoFs):

Ik = 1
2

(
q̄2

k + p̄2
k

)
. (15)

The integrals provide a natural definition of the term ‘mode’ that is appropriate in the
context of reaction, and their existence is a consequence of the (local) integrability in a
neighborhood of the equilibrium point of saddle-center-· · ·-center stability type. Moreover,
the expression of the normal form Hamiltonian in terms of the integrals provides us with a
way to partition the energy between the different modes5.

3 Briefly, the co-dimension of a submanifold is the dimension of the space in which the submanifold exists, minus
the dimension of the submanifold. The significance of a submanifold being ‘co-dimension one’ is that it is one less
dimension than the space in which it exists. Therefore it can ‘divide’ the space and act as a separatrix, or barrier, to
transport.
4 The original coordinates (q, p) had an interpretation as configuration space coordinates and momentum coordinates.
The normal form coordinates (q̄, p̄), in general, do not have such a physical interpretation since both q̄ and p̄ are
nonlinear functions of both q and p.
5 The normal form algorithm that yields all of these results can be applied to realistic molecular Hamiltonians with
software available at http://lacms.maths.bris.ac.uk/publications/software/index.html.
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The n integrals, the normalized Hamiltonian expressed as a function of the integrals and
the transformation between the normal form coordinates and the physical coordinates are
the key to practically realizing the phase-space structures described at the beginning of this
section. The approximate integrability of Hamilton’s equations in the reaction region allows
a precise and quantitative understanding of all possible trajectories in this region. It also
provides a natural construction of an energy dependent reaction coordinate whose properties
are determined solely by the Hamiltonian dynamics, as opposed to the need for a priori
definitions of possible candidates for reaction coordinates [60].

The n integrals of the motion defined in the neighborhood of the reaction region give
rise to further phase-space structures, and therefore constraints on the motion, in addition to
those described at the beginning of this section. The common level sets of all the integrals are
examples of invariant Lagrangian submanifolds [61–63], which have the geometrical structure
of two disjoint n-dimensional toroidal cylinders, denoted R × T

n−1, i.e. the Cartesian product
of a line with n − 1 copies of the circle.

In the following section we show how all of this phase-space structure exists for
thermostatted dynamics of the physical Hamiltonian (1) in physical time t.

4. Microcanonical phase-space structure: Hamiltonian and corresponding

non-Hamiltonian thermostatted systems

In this section we will show that if the phase-space structure described in section 3 exists for
the physical Hamiltonian system (2), it also exists in the phase space of the non-Hamiltonian
isokinetic equations of motion (10) corresponding to the thermostatted dynamics of the
physical Hamiltonian (1) in physical time t. This is accomplished in three steps by showing:

(1) If the physical Hamiltonian system (2) has an equilibrium point at the origin of saddle-
center-· · ·-center stability type, then the Hamiltonian system defined by (5) corresponding
to the Hamiltonian isokinetic thermostat has an equilibrium point also at the origin of
saddle-center-· · ·-center stability type. Moreover (and significantly), we show that the
equilibrium points in these two systems satisfy the same nonresonance condition.

(2) The energy of the saddle-center-· · ·-center type equilibrium point of (5) is negative, but it
can be brought sufficiently close to zero so that the microcanonical geometrical structures
described in section 3 exist on the zero-energy surface of (5).

(3) The geometrical structures on the zero-energy surface of (5) map to geometrical structures
in the phase space of the non-Hamiltonian thermostatted system corresponding to (10).

We begin with step 1. We assume that (2) has an equilibrium point at (q, p) = (q∗, p∗) =
(0, 0). From (1), the energy of this equilibrium point is H(0, 0) = �(0).

The stability of the equilibrium point is determined by the eigenvalues of the derivative of
the Hamiltonian vector field evaluated at the equilibrium point. This is given by the 2n × 2n

matrix:

Msys =
(

0n×n idn×n

−�qq(0) 0n×n

)
, (16)

where 0n×n denotes the n × n matrix of zeros and idn×n denotes the n × n identity matrix. We
require the equilibrium point to be of saddle-center-· · ·-center stability type. This means that
the 2n × 2n matrix Msys has eigenvalues ±λ,±iωi, i = 2, . . . , n where λ and ωi are real.

Eigenvalues γ of Msys are obtained by solving the characteristic equation det(Msys −
γ id2n×2n) = 0. From theorem 3 of [64], the block structure of the 2n×2n matrix Msys implies
that

det(Msys − γ id2n×2n) = det(�qq(0) + γ 2idn×n) = 0 (17)
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so that the 2n eigenvalues γ are given in terms of σ , the eigenvalues of the n × n Hessian
matrix �qq(0) associated with the potential as follows:

γk, γk+n = ±√−σk, k = 1, . . . , n. (18)

Therefore, if �(q) has a rank-one saddle at q = 0, so that one eigenvalue is strictly negative and
the rest are strictly positive, then (q, p) = (0, 0) is a saddle-center-· · ·-center type equilibrium
point for (2) as described above.

We discuss the nonresonance condition in more detail. Suppose σ1 < 0 and σi > 0.
i = 2, . . . , n. Then the nonresonance condition satisfied by the purely imaginary eigenvalues
is given by (m2, . . . , mn) · (γ2, . . . , γn) �= 0 for all integer vectors (m2, . . . , mn) whose
entries are not all zero (where ‘·’ denotes the scalar product). The nonresonance condition is
responsible for the existence of the n − 1 (local) integrals of motion I2, . . . , In.

Next, we consider the Hamiltonian system (5) corresponding to the Hamiltonian isokinetic
thermostat. It is easy to verify that (q, π) = (0, 0) is an equilibrium point for (5) with energy
K(0, 0) = − 1

2 e−�(0).
Proceeding as above, we determine the stability of this equilibrium point by computing

the matrix associated with the linearization of (5) at the equilibrium point:

Mtherm =
(

0n×n idn×n e+�(0)

−�qq(0)
(

1
2 e−�(0)

)
0n×n

)
. (19)

The 2n eigenvalues of Mtherm, which we denote as γ̄ , can be computed by exactly the same
type of calculations as above. The resulting eigenvalues are given in terms of the eigenvalues
of the potential Hessian as follows:

γ̄k, γ̄k+n = ±
√

−σk

2
, k = 1, . . . , n. (20)

Therefore, it is clear that if the potential of the physical Hamiltonian, �(q), has a rank-one
saddle at q = 0, so that one eigenvalue is strictly negative and the rest are strictly positive,
then (q, π) = (0, 0) is a saddle-center-· · ·-center type equilibrium point for (5).

Moreover, since γ̄ = 1√
2
γ it follows by comparing (18) with (20) that if the imaginary

parts of the eigenvalues associated with the saddle for the physical Hamiltonian satisfy a
nonresonance condition, then they satisfy a nonresonance condition for the saddle associated
with the Hamiltonian isokinetic thermostat, i.e (m2, . . . , mn) · (γ2, . . . , γn) �= 0 implies that
(m2, . . . , mn) · 1√

2
(γ2, . . . , γn) = (m2, . . . , mn) · (γ̄2, . . . , γ̄n) �= 0.

Now consider step 2. As we showed above, the saddle-center-· · ·-center type equilibrium
point (q, π) = (0, 0) of 5 has energy K(0, 0) = − 1

2 e−�(0) < 0. However, we are only
interested in the dynamics on the K = 0 energy surface. The point here is that all of
the phase-space structures described in section 3 exist for energies ‘above and sufficiently
close’ to the energy of the saddle-center-· · ·-center type equilibrium point, and the question
is whether or not − 1

2 e−�(0) < 0 is close enough to zero so that the phase-space structures
described in section 3 exist on the K = 0 energy surface. This can easily be arranged by
making �(0) larger by adding an appropriate constant to �(q) or by changing the value of the
temperature T.

The final step 3 is to show that the phase-space structure of (5) on K = 0 exists for
the isokinetic equations of motion (10) corresponding to the thermostatted dynamics of the
physical Hamiltonian (1) in physical time t.

Step 3 follows from general results that show that invariant manifolds and their stability
properties are preserved under differentiable, invertible (with differentiable inverse) coordinate
transformations (i.e. they are preserved under differentiable conjugacies). We emphasize that
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these results are ‘well known’ and appear in a variety of places throughout the literature, e.g.,
[65, 66].

These general results allow us to make the following conclusions:

• Under the map (7) the (2n − 1)-dimensional invariant energy surface of the effective
Hamiltonian system (5) maps to a (2n − 1)-dimensional invariant manifold for the non-
Hamiltonian isokinetic equations of motion for the thermostatted physical Hamiltonian
(1) in physical time t defined by (10).

• Under the map (7) the (2n − 3)-dimensional NHIM, its (2n − 2)-dimensional stable
and unstable manifolds, the n-dimensional invariant Lagrangian submanifolds and the
(2n−2)-dimensional dividing surface map to a (2n−3)-dimensional NHIM, its (2n−2)-
dimensional stable and unstable manifolds, n-dimensional invariant submanifolds and a
(2n − 2)-dimensional dividing surface in the (2n − 1)-dimensional invariant manifold in
the 2n-dimensional phase space of the non-Hamiltonian isokinetic equations of motion
for the thermostatted physical Hamiltonian (1) in physical time t defined by (10).

5. Summary and outlook

In this paper we have examined the relation between phase-space structures in Hamiltonian and
non-Hamiltonian thermostats. In particular, we have established the existence of a mapping
between invariant phase-space structures in the phase space of the extended Hamiltonian for the
isokinetic thermostat and corresponding structures in the phase space of the non-Hamiltonian
Gaussian isokinetic thermostat.

Our results establish a conceptual link between the question of thermostat ergodicity and
the issue of statisticality in unimolecular isomerization reactions. The existence of normally
hyperbolic invariant manifolds in both the physical and extended Hamiltonian phase spaces
means that recently developed methods for the analysis of isomerization dynamics can be
applied to the thermostat problem. Numerical studies of the isokinetic thermostat based on
the ideas presented here are currently in progress.

Finally, we note that the approach presented here for the Hamiltonian isokinetic thermostat
is in principle applicable to other thermostats. Although the popular Nosé–Hoover thermostat
[6, 7] and its many variants such as the Nosé–Hoover chain thermostat [28] are essentially non-
Hamiltonian dynamical systems, the analysis outlined in the present paper could be applied to
Hamiltonian thermostats such as the Nosé–Poincaré system [11].
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